VTF70 High Temperature Series

ARTS Energy's high temperature Ni-Cd series are perfectly suited to emergency and security equipment applications. It is designed to accept a permanent charge for a minimum of 4 years in high temperature environments (up + 55° C).

To meet customers' requirements, ARTS Energy provides custom-designed and standardized battery packs.

For your battery design and system needs, please contact ARTS Energy's engineers.

Applications

- Emergency lighting
- Professional lighting
- Memory back-up systems
- Security devices

Main advantages

- Good charge efficiency at high temperature
- Permanent charge
- Good storage retention

Technology

- Sintered positive electrode
- Plastic bonded negative electrode

Temperature range in discharge

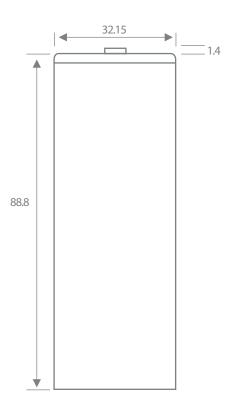
- 20°C to + 70°C

Storage

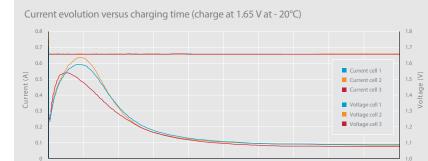
Recommended: $+5^{\circ}C$ to $+25^{\circ}C$ Relative humidity: $65 \pm 5 \%$

Electrical characteristics			
Nominal voltage (V)			1.2
Typical capacity (mAh)*			7700
IEC minimum capacity (mAh)*			7000
IEC designation			KRMT 33/91
Impedance at 1000 Hz (mΩ)			5
* Charge 16 h at C/10, discharge at C/5.			
Dimensions			
Diameter (mm)			32.15 ± 0.1
Height (mm)			88.8 ± 0.4
Top projection (mm)			1.4 ± 0.4
Top flat area diameter (mm)			5.6
Weight (g)			210
Dimensions are given for bare cells.			
Charge conditions Rate	Time (h)	Temp. (°C)	Charge current (mA)
Standard	16	+ 15 to + 55	700
Permanent		+ 15 to + 55	350
Trickle*			175 to 235
End of charge cut-off is requested: -dV or dT°C/dt.	* Trickle ch	arge follows fast charge	2.
Maximum discharge current			
Continuous (A) at + 20°C			20
Peak (A) at + 20°C*			150
* Peak duration: 0.3 second - final discharge voltage 0.0	65 volt/cell		

* Peak duration: 0.3 second - final discharge voltage 0.65 volt/cell

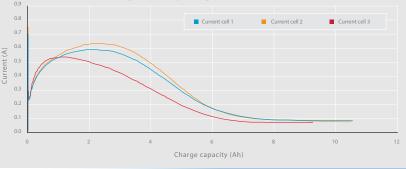


Advanced Rechargeable Technology and Solutions



Typical performances

For graphs shown, C is the IEC_5 capacity.



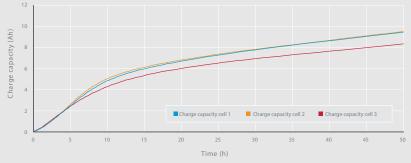
Current evolution versus charged capacity (charge at 1.65 V at - 20°C)

20

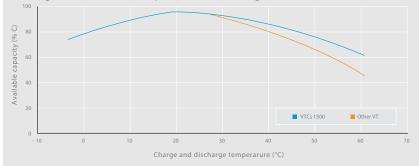
10

Time (h)


30


35

40


45

50

Discharge at 12 A at different temperatures after fast charge, at 4 A

Data are given for single cells. Please consult ARTS Energy for utilization of cell outside this specification.

Data in this document are subject to change without notice and become contractual only after written confirmation by ARTS Energy.

10, rue Ampère Zone Industrielle 16440 Nersac, France Tél. +33(0)5 45 90 35 50 www.arts-energy.com